Modularization of reservoir computing networks for the recognition of brainstates

dc.contributor.advisorCos Aguilera, Ignasi
dc.contributor.advisorZamora López, Gorka
dc.contributor.authorDomènech Gutiérrez, Xènia
dc.date.accessioned2022-07-15T08:32:18Z
dc.date.available2022-07-15T08:32:18Z
dc.date.issued2022-01-24
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2022, Director: Ignasi Cos Aguilera i Gorka Zamora Lópezca
dc.description.abstract[en] This project consisted of the research, study and modularization of a complex neural network, consisting of one or several reservoir computing modules. This is performed by means of Python scripts, aiming at learning in a way inspired on how the human brain does. The manucript starts with a theoretical introduction describing basic concepts of complex networks, listing their types and applications, so that the reader can understand how we have used the idea for the development of the script. The second part describes the process and impact of the modularization modules first described, and the comparison with the non-modularized program.ca
dc.format.extent39 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/187760
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Xènia Domènech Gutiérrez, 2022
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques
dc.subject.classificationXarxes neuronals (Informàtica)ca
dc.subject.classificationTreballs de fi de grau
dc.subject.classificationAprenentatge automàticca
dc.subject.otherNeural networks (Computer science)en
dc.subject.otherBachelor's theses
dc.subject.otherMachine learningen
dc.titleModularization of reservoir computing networks for the recognition of brainstatesca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
tfg_domenech_gutierrez_xenia.pdf
Mida:
1.86 MB
Format:
Adobe Portable Document Format
Descripció:
Memòria