El fibrado de Hopf en homotopía estable

dc.contributor.advisorCasacuberta, Carles
dc.contributor.authorMuñoz Pereiro, Luis
dc.date.accessioned2019-01-18T09:59:07Z
dc.date.available2019-01-18T09:59:07Z
dc.date.issued2018-06-27
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2018, Director: Carles Casacubertaca
dc.description.abstract[en] In this work we study the Hopf map from the 3-sphere $S^{3} $ to the 2-sphere $S^{2}$. We review some properties of the higher homotopy groups of spaces and prove that the Hopf map is a generator of $\pi_{3} (S^{2})$. As an introduction to stable homotopy theory, we prove the Freudenthal suspension theorem for the spheres and explain why the first stable homotopy group $\pi^{s}_{1}$ is isomorphic to $\mathbb{Z}/2\mathbb{Z}$. In order to prove it we use the Pontryagin-Thom construction, a result that relates the homotopy groups of spheres with framed cobordism classes of framed manifolds. Our goal is to understand geometrically why the class represented by the Hopf map has infinite order in $\pi_{3}(S^{2})$ but its suspensions have order 2 in $\pi_{n+1}(S^{n})$ for $n > 2$.ca
dc.format.extent34 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/127418
dc.language.isospaca
dc.rightscc-by-nc-nd (c) Luis Muñoz Pereiro, 2018
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques
dc.subject.classificationFeixos fibrats (Matemàtica)ca
dc.subject.classificationTreballs de fi de grau
dc.subject.classificationGrups d'homotopiaca
dc.subject.classificationVarietats diferenciablesca
dc.subject.otherFiber bundles (Mathematics)en
dc.subject.otherBachelor's theses
dc.subject.otherHomotopy groupsen
dc.subject.otherDifferentiable manifoldsen
dc.titleEl fibrado de Hopf en homotopía estableca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
memoria.pdf
Mida:
1.29 MB
Format:
Adobe Portable Document Format
Descripció:
Memòria