Espais de Sobolev

dc.contributor.advisorCarro Rossell, María Jesús
dc.contributor.authorRibera Baraut, Pol
dc.date.accessioned2019-01-22T09:33:57Z
dc.date.available2019-01-22T09:33:57Z
dc.date.issued2018-06-27
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2018, Director: María Jesús Carro Rossellca
dc.description.abstract[en] Functional analysis and partial differential equations are two areas of mathematics that have a very strong connection but they are studied separately in the grade. In this work, we will study some great results of functional analysis, such as the open mapping theorem or the Hahn-Banach theorems, and we will also study the spaces where the solutions of partial differential equations live, the Sobolev spaces. We will see the inclusions that exists between them and under which conditions these solutions are regular or not. To do this, we will use functional analysis techniques and results, seeing this strong connection that exists between these two areas.ca
dc.format.extent56 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/127501
dc.language.isocatca
dc.rightscc-by-nc-nd (c) Pol Ribera Baraut, 2018
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques
dc.subject.classificationEspais de Sobolevca
dc.subject.classificationTreballs de fi de grau
dc.subject.classificationEquacions en derivades parcialsca
dc.subject.classificationAnàlisi funcionalca
dc.subject.otherSobolev spacesen
dc.subject.otherBachelor's theses
dc.subject.otherPartial differential equationsen
dc.subject.otherFunctional analysisen
dc.titleEspais de Sobolevca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
memoria.pdf
Mida:
465.73 KB
Format:
Adobe Portable Document Format
Descripció:
Memòria