Carregant...
Miniatura

Tipus de document

Tesi

Versió

Versió publicada

Data de publicació

Tots els drets reservats

Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/35132

On the Slope and Geography of Fibred Surfaces and Threefolds.

Títol de la revista

ISSN de la revista

Títol del volum

Recurs relacionat

Resum

[eng] In this tesis we study numerical propieties of surfaces and threefolds, mainly fibred over curves, the so called "slope" of the fibration. We prove partially a conjecture of Fujita on the semiampleness of the direct image of the relative dualizing sheaf of a fibration. We give new lower bounds of the slope of a fibred surface depending on data of the general fibre (existence of involutions) and on data of the hole surface (the fibration not being the Albanese morphism, for example). We study the case of threefolds over curves. We prove that, in general, the relative algebraic Euler characteristic is nonnegative and give lower bound for the slope. We classify the lowest cases of the invariants.

Citació

Citació

BARJA YÁÑEZ, Miguel ángel. On the Slope and Geography of Fibred Surfaces and Threefolds.. [consulta: 23 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/35132]

Exportar metadades

JSON - METS

Compartir registre