On the Slope and Geography of Fibred Surfaces and Threefolds.

dc.contributor.advisorNaranjo del Val, Juan Carlos
dc.contributor.authorBarja Yáñez, Miguel Ángel
dc.contributor.otherUniversitat de Barcelona. Departament d'Àlgebra i Geometria
dc.date.accessioned2013-04-23T12:13:28Z
dc.date.available2013-04-23T12:13:28Z
dc.date.issued1998-12-21
dc.description.abstract[eng] In this tesis we study numerical propieties of surfaces and threefolds, mainly fibred over curves, the so called "slope" of the fibration. We prove partially a conjecture of Fujita on the semiampleness of the direct image of the relative dualizing sheaf of a fibration. We give new lower bounds of the slope of a fibred surface depending on data of the general fibre (existence of involutions) and on data of the hole surface (the fibration not being the Albanese morphism, for example). We study the case of threefolds over curves. We prove that, in general, the relative algebraic Euler characteristic is nonnegative and give lower bound for the slope. We classify the lowest cases of the invariants.eng
dc.format.mimetypeapplication/pdf
dc.identifier.dlB.12696-2002
dc.identifier.isbn8447526143
dc.identifier.tdxhttp://www.tdx.cat/TDX-0227102-092419
dc.identifier.tdxhttp://hdl.handle.net/10803/655
dc.identifier.urihttps://hdl.handle.net/2445/35132
dc.language.isoeng
dc.publisherUniversitat de Barcelona
dc.rights(c) Barja Yáñez, 1998
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesscat
dc.sourceTesis Doctorals - Departament - Algebra i Geometria
dc.subject.classificationGeometria algebraica
dc.subject.classificationSuperfícies algebraiques
dc.subject.otherAlgebraic geometry
dc.subject.otherSurfaces, Algebraic
dc.titleOn the Slope and Geography of Fibred Surfaces and Threefolds.eng
dc.typeinfo:eu-repo/semantics/doctoralThesis
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
TOL47.pdf
Mida:
1.02 MB
Format:
Adobe Portable Document Format