La corba de Frey: teoria i aplicacions

dc.contributor.advisorTravesa i Grau, Artur
dc.contributor.authorCurcó Iranzo, Mar
dc.date.accessioned2018-04-25T10:11:33Z
dc.date.available2018-04-25T10:11:33Z
dc.date.issued2017-06-29
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2017, Director: Artur Travesa i Grauca
dc.description.abstract[en] We start this thesis with a brief study on the Rieman-Roch Theorem so we can later introduce the concept of elliptic curve. We’ll proceed studying these as Weirstrass plane cubics and their reduction behaviour. Subsequently we’ll develop the construction of Frey’s curve and study some of its properties. Then, we give a short introduction to modular functions and Galois representation. Finally, we draw an outline for the proof of Fermat’s Theorem, where we can appreciate the importance of said curve. We conclude with an application of this method on other diofantic equations.ca
dc.format.extent62 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/121867
dc.language.isocatca
dc.rightscc-by-nc-nd (c) Mar Curcó Iranzo, 2017
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques
dc.subject.classificationCorbes el·líptiques
dc.subject.classificationTreballs de fi de grau
dc.subject.classificationSuperfícies cúbiquesca
dc.subject.classificationAnàlisi diofànticaca
dc.subject.classificationFuncions modularsca
dc.subject.otherElliptic curves
dc.subject.otherBachelor's theses
dc.subject.otherCubic surfacesen
dc.subject.otherDiophantine analysisen
dc.subject.otherModular functionsen
dc.titleLa corba de Frey: teoria i aplicacionsca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
memoria.pdf
Mida:
1.01 MB
Format:
Adobe Portable Document Format
Descripció:
Memòria