Kähler geometry

dc.contributor.advisorLahoz Vilalta, Martí
dc.contributor.authorPorta Grau, Roger
dc.date.accessioned2021-06-08T09:35:03Z
dc.date.available2021-06-08T09:35:03Z
dc.date.issued2020-06-21
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2020, Director: Martí Lahoz Vilaltaca
dc.description.abstract[en] The main goal of this work is to provide an introductory dive into the subject of Complex Geometry by giving three different characterizations of Kähler manifolds and proving their equivalence. We define complex, Hermitian, Kähler and symplectic manifolds and we briefly study their properties. We present the Hodge conjecture and define the holonomy group. Finally, we present a brief glimpse into other types of spaces, namely Calabi-Yau and Hyperkähler manifolds.ca
dc.format.extent50 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/178133
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Roger Porta Grau, 2020
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques
dc.subject.classificationVarietats de Kählerca
dc.subject.classificationTreballs de fi de grau
dc.subject.classificationConnexions (Matemàtica)ca
dc.subject.classificationGeometria diferencial globalca
dc.subject.classificationVarietats simplèctiquesca
dc.subject.otherKählerian manifoldsen
dc.subject.otherBachelor's theses
dc.subject.otherConnections (Mathematics)en
dc.subject.otherGlobal differential geometryen
dc.subject.otherSymplectic manifoldsen
dc.titleKähler geometryca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
178133.pdf
Mida:
671.72 KB
Format:
Adobe Portable Document Format
Descripció:
Memòria