Kähler geometry
| dc.contributor.advisor | Lahoz Vilalta, Martí | |
| dc.contributor.author | Porta Grau, Roger | |
| dc.date.accessioned | 2021-06-08T09:35:03Z | |
| dc.date.available | 2021-06-08T09:35:03Z | |
| dc.date.issued | 2020-06-21 | |
| dc.description | Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2020, Director: Martí Lahoz Vilalta | ca |
| dc.description.abstract | [en] The main goal of this work is to provide an introductory dive into the subject of Complex Geometry by giving three different characterizations of Kähler manifolds and proving their equivalence. We define complex, Hermitian, Kähler and symplectic manifolds and we briefly study their properties. We present the Hodge conjecture and define the holonomy group. Finally, we present a brief glimpse into other types of spaces, namely Calabi-Yau and Hyperkähler manifolds. | ca |
| dc.format.extent | 50 p. | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.uri | https://hdl.handle.net/2445/178133 | |
| dc.language.iso | eng | ca |
| dc.rights | cc-by-nc-nd (c) Roger Porta Grau, 2020 | |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | ca |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ | * |
| dc.source | Treballs Finals de Grau (TFG) - Matemàtiques | |
| dc.subject.classification | Varietats de Kähler | ca |
| dc.subject.classification | Treballs de fi de grau | |
| dc.subject.classification | Connexions (Matemàtica) | ca |
| dc.subject.classification | Geometria diferencial global | ca |
| dc.subject.classification | Varietats simplèctiques | ca |
| dc.subject.other | Kählerian manifolds | en |
| dc.subject.other | Bachelor's theses | |
| dc.subject.other | Connections (Mathematics) | en |
| dc.subject.other | Global differential geometry | en |
| dc.subject.other | Symplectic manifolds | en |
| dc.title | Kähler geometry | ca |
| dc.type | info:eu-repo/semantics/bachelorThesis | ca |
Fitxers
Paquet original
1 - 1 de 1
Carregant...
- Nom:
- 178133.pdf
- Mida:
- 671.72 KB
- Format:
- Adobe Portable Document Format
- Descripció:
- Memòria