A metabolomics-driven approach to predict cocoa product consumption by designing a multimetabolite biomarker model in free-living subjects from the PREDIMED study

dc.contributor.authorGarcia Aloy, Mar
dc.contributor.authorLlorach, Rafael
dc.contributor.authorUrpí Sardà, Mireia
dc.contributor.authorJáuregui Pallarés, Olga
dc.contributor.authorCorella Piquer, Dolores
dc.contributor.authorRuiz-Canela, Miguel
dc.contributor.authorSalas Salvadó, Jordi
dc.contributor.authorFitó Colomer, Montserrat
dc.contributor.authorRos Rahola, Emilio
dc.contributor.authorEstruch Riba, Ramon
dc.contributor.authorAndrés Lacueva, Ma. Cristina
dc.date.accessioned2017-03-27T10:18:27Z
dc.date.available2017-03-27T10:18:27Z
dc.date.issued2015-02
dc.date.updated2017-03-27T10:18:27Z
dc.description.abstractSCOPE: The aim of the current study was to apply an untargeted metabolomics strategy to characterize a model of cocoa intake biomarkers in a free-living population. METHODS AND RESULTS: An untargeted HPLC-q-ToF-MS based metabolomics approach was applied to human urine from 32 consumers of cocoa or derived products (CC) and 32 matched control subjects with no consumption of cocoa products (NC). The multivariate statistical analysis (OSC-PLS-DA) showed clear differences between CC and NC groups. The discriminant biomarkers identified were mainly related to the metabolic pathways of theobromine and polyphenols, as well as to cocoa processing. Consumption of cocoa products was also associated with reduced urinary excretions of methylglutarylcarnitine, which could be related to effects of cocoa exposure on insulin resistance. To improve the prediction of cocoa consumption, a combined urinary metabolite model was constructed. ROC curves were constructed to evaluate the model and individual metabolites. The AUC values (95% CI) for the model were 95.7% (89.8-100%) and 92.6% (81.9-100%) in training and validation sets, respectively, whereas the AUCs for individual metabolites were <90%. CONCLUSIONS: The metabolic signature of cocoa consumption in free-living subjects reveals that combining different metabolites as biomarker models improves prediction of dietary exposure to cocoa.
dc.format.extent9 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec644020
dc.identifier.issn1613-4125
dc.identifier.pmid25298021
dc.identifier.urihttps://hdl.handle.net/2445/108943
dc.language.isoeng
dc.publisherWiley-VCH
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1002/mnfr.201400434.
dc.relation.ispartofMolecular Nutrition & Food Research, 2015, vol. 59, num. 2, p. 212-220
dc.relation.urihttps://doi.org/10.1002/mnfr.201400434.
dc.rights(c) Wiley-VCH, 2015
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Nutrició, Ciències de l'Alimentació i Gastronomia)
dc.subject.classificationMarcadors bioquímics
dc.subject.classificationCacau
dc.subject.classificationCromatografia de líquids d'alta resolució
dc.subject.classificationNutrició
dc.subject.classificationPolifenols
dc.subject.classificationMetabolisme
dc.subject.otherBiochemical markers
dc.subject.otherCocoa
dc.subject.otherHigh performance liquid chromatography
dc.subject.otherNutrition
dc.subject.otherPolyphenols
dc.subject.otherMetabolism
dc.titleA metabolomics-driven approach to predict cocoa product consumption by designing a multimetabolite biomarker model in free-living subjects from the PREDIMED study
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
644020.pdf
Mida:
415.39 KB
Format:
Adobe Portable Document Format