Forecasting Business surveys indicators: neural networks vs. time series models

dc.contributor.authorClavería González, Óscar
dc.contributor.authorTorra Porras, Salvador
dc.date.accessioned2014-09-30T11:21:21Z
dc.date.available2014-09-30T11:21:21Z
dc.date.issued2013
dc.date.updated2014-09-30T11:21:21Z
dc.description.abstractThe objective of this paper is to compare different forecasting methods for the short run forecasting of Business Survey Indicators. We compare the forecasting accuracy of Artificial Neural Networks -ANN- vs. three different time series models: autoregressions -AR-, autoregressive integrated moving average -ARIMA- and self-exciting threshold autoregressions -SETAR-. We consider all the indicators of the question related to a country’s general situation regarding overall economy, capital expenditures and private consumption -present judgement, compared to same time last year, expected situation by the end of the next six months- of the World Economic Survey -WES- carried out by the Ifo Institute for Economic Research in co-operation with the International Chamber of Commerce. The forecast competition is undertaken for fourteen countries of the European Union. The main results of the forecast competition are offered for raw data for the period ranging from 1989 to 2008, using the last eight quarters for comparing the forecasting accuracy of the different techniques. ANN and ARIMA models outperform SETAR and AR models. Enlarging the observed time series of Business Survey Indicators is of upmost importance in order of assessing the implications of the current situation and its use as input in quantitative forecast models.
dc.format.extent28 p.
dc.format.mimetypeapplication/pdf
dc.identifier.issn2014-1254
dc.identifier.urihttps://hdl.handle.net/2445/57830
dc.language.isoeng
dc.publisherUniversitat de Barcelona. Institut de Recerca en Economia Aplicada Regional i Pública
dc.relation.isformatofReproducció del document publicat a: http://www.ub.edu/irea/working_papers/2013/201320.pdf
dc.relation.ispartofIREA – Working Papers, 2013, IR13/20
dc.relation.ispartofAQR – Working Papers, 2013, AQR13/12
dc.relation.ispartofseries[WP E-AQR13/12]
dc.relation.ispartofseries[WP E-IR13/20]
dc.rightscc-by-nc-nd, (c) Clavería González et al., 2013
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/
dc.sourceDocuments de treball (Institut de Recerca en Economia Aplicada Regional i Pública (IREA))
dc.subject.classificationPrevisió econòmica
dc.subject.classificationMacroeconomia
dc.subject.classificationEconomia
dc.subject.classificationConsumidors
dc.subject.classificationPrevisió dels negocis
dc.subject.otherEconomic forecasting
dc.subject.otherMacroeconomics
dc.subject.otherEconomics
dc.subject.otherConsumers
dc.subject.otherBusiness forecasting
dc.titleForecasting Business surveys indicators: neural networks vs. time series modelseng
dc.typeinfo:eu-repo/semantics/workingPaper

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
IR13-020_Claveria.pdf
Mida:
658.03 KB
Format:
Adobe Portable Document Format