Combining MRI and clinical data to detect high relapse risk after the first episode of psychosis

dc.contributor.authorSolanes, Aleix
dc.contributor.authorMezquida Mateos, Gisela
dc.contributor.authorJanssen, Joost
dc.contributor.authorAmoretti Guadall, Silvia
dc.contributor.authorLobo, Antonio
dc.contributor.authorGonzález-Pinto, Ana
dc.contributor.authorArango López, Celso
dc.contributor.authorVieta i Pascual, Eduard, 1963-
dc.contributor.authorCastro Fornieles, Josefina
dc.contributor.authorBergé, Daniel
dc.contributor.authorAlbacete, Auria
dc.contributor.authorGiné Soca, Eva
dc.contributor.authorParellada, Mara
dc.contributor.authorBernardo Vilamitjana, Mercè
dc.contributor.authorPEPs Group
dc.contributor.authorPomarol-Clotet, Edith
dc.contributor.authorRadua, Joaquim
dc.date.accessioned2025-04-02T14:17:00Z
dc.date.available2025-04-02T14:17:00Z
dc.date.issued2022-11-17
dc.date.updated2025-04-02T14:17:00Z
dc.description.abstractDetecting patients at high relapse risk after the first episode of psychosis (HRR-FEP) could help the clinician adjust the preventive treatment. To develop a tool to detect patients at HRR using their baseline clinical and structural MRI, we followed 227 patients with FEP for 18-24 months and applied MRIPredict. We previously optimized the MRI-based machine-learning parameters (combining unmodulated and modulated gray and white matter and using voxel-based ensemble) in two independent datasets. Patients estimated to be at HRR-FEP showed a substantially increased risk of relapse (hazard ratio = 4.58, P < 0.05). Accuracy was poorer when we only used clinical or MRI data. We thus show the potential of combining clinical and MRI data to detect which individuals are more likely to relapse, who may benefit from increased frequency of visits, and which are unlikely, who may be currently receiving unnecessary prophylactic treatments. We also provide an updated version of the MRIPredict software.
dc.format.extent9 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec735354
dc.identifier.idimarina9332624
dc.identifier.urihttps://hdl.handle.net/2445/220204
dc.language.isoeng
dc.publisherSpringer Nature
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1038/s41537-022-00309-w
dc.relation.ispartofSchizophrenia, 2022, vol. 8
dc.relation.urihttps://doi.org/10.1038/s41537-022-00309-w
dc.rightscc-by (c) Solanes, A. et al., 2022
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceArticles publicats en revistes (Medicina)
dc.subject.classificationFactors de risc en les malalties
dc.subject.classificationPsicosi
dc.subject.classificationRessonància magnètica
dc.subject.otherRisk factors in diseases
dc.subject.otherPsychoses
dc.subject.otherMagnetic resonance
dc.titleCombining MRI and clinical data to detect high relapse risk after the first episode of psychosis
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
262335.pdf
Mida:
776.73 KB
Format:
Adobe Portable Document Format