Carregant...
Miniatura

Tipus de document

Article

Data de publicació

Llicència de publicació

(c) The Authors, 2018
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/161260

Statistical inference in brain graphs using threshold-free network-based statistics

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

The description of brain networks as graphs where nodes represent different brain regions and edges represent a measure of connectivity between a pair of nodes is an increasingly used approach in neuroimaging research. The development of powerful methods for edge-wise grouplevel statistical inference in brain graphs while controlling for multiple-testing associated falsepositive rates, however, remains a difficult task. In this study, we use simulated data to assess the properties of threshold-free network-based statistics (TFNBS). The TFNBS combines thresholdfree cluster enhancement, a method commonly used in voxel-wise statistical inference, and network-based statistic (NBS), which is frequently used for statistical analysis of brain graphs. Unlike the NBS, TFNBS generates edge-wise significance values and does not require the a priori definition of a hard cluster-defining threshold. Other test parameters, nonetheless, need to be set. We show that it is possible to find parameters that make TFNBS sensitive to strong and topologically clustered effects, while appropriately controlling false-positive rates. Our results show that the TFNBS is an adequate technique for the statistical assessment of brain graphs.

Citació

Citació

BAGGIO, Hugo césar, ABÓS, Alexandra, SEGURA I FÀBREGAS, Bàrbara, CAMPABADAL DELGADO, Anna, GARCÍA DÍAZ, Anna i., URIBE, Carme, COMPTA, Yaroslau, MARTÍ DOMÈNECH, Ma. josep, VALLDEORIOLA SERRA, Francesc, JUNQUÉ I PLAJA, Carme. Statistical inference in brain graphs using threshold-free network-based statistics. _Human Brain Mapping_. 2018. Vol. 39, núm. 6, pàgs. 2289-2302. [consulta: 2 de febrer de 2026]. ISSN: 1065-9471. [Disponible a: https://hdl.handle.net/2445/161260]

Exportar metadades

JSON - METS

Compartir registre