Statistical inference in brain graphs using threshold-free network-based statistics

dc.contributor.authorBaggio, Hugo César
dc.contributor.authorAbós, Alexandra
dc.contributor.authorSegura i Fàbregas, Bàrbara
dc.contributor.authorCampabadal Delgado, Anna
dc.contributor.authorGarcía Díaz, Anna I.
dc.contributor.authorUribe, Carme
dc.contributor.authorCompta, Yaroslau
dc.contributor.authorMartí Domènech, Ma. Josep
dc.contributor.authorValldeoriola Serra, Francesc
dc.contributor.authorJunqué i Plaja, Carme, 1955-
dc.date.accessioned2020-05-19T09:52:36Z
dc.date.available2020-05-19T09:52:36Z
dc.date.issued2018-02-01
dc.date.updated2020-05-19T09:52:37Z
dc.description.abstractThe description of brain networks as graphs where nodes represent different brain regions and edges represent a measure of connectivity between a pair of nodes is an increasingly used approach in neuroimaging research. The development of powerful methods for edge-wise grouplevel statistical inference in brain graphs while controlling for multiple-testing associated falsepositive rates, however, remains a difficult task. In this study, we use simulated data to assess the properties of threshold-free network-based statistics (TFNBS). The TFNBS combines thresholdfree cluster enhancement, a method commonly used in voxel-wise statistical inference, and network-based statistic (NBS), which is frequently used for statistical analysis of brain graphs. Unlike the NBS, TFNBS generates edge-wise significance values and does not require the a priori definition of a hard cluster-defining threshold. Other test parameters, nonetheless, need to be set. We show that it is possible to find parameters that make TFNBS sensitive to strong and topologically clustered effects, while appropriately controlling false-positive rates. Our results show that the TFNBS is an adequate technique for the statistical assessment of brain graphs.
dc.format.extent14 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec677470
dc.identifier.issn1065-9471
dc.identifier.pmid29450940
dc.identifier.urihttps://hdl.handle.net/2445/161260
dc.language.isoeng
dc.publisherWiley
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1002/hbm.24007
dc.relation.ispartofHuman Brain Mapping, 2018, vol. 39, num. 6, p. 2289-2302
dc.relation.urihttps://doi.org/10.1002/hbm.24007
dc.rights(c) The Authors, 2018
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceArticles publicats en revistes (Medicina)
dc.subject.classificationMètodes gràfics
dc.subject.classificationXarxes neuronals (Neurobiologia)
dc.subject.otherGraphic methods
dc.subject.otherNeural networks (Neurobiology)
dc.titleStatistical inference in brain graphs using threshold-free network-based statistics
dc.typeinfo:eu-repo/semantics/article

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
677470.pdf
Mida:
2.14 MB
Format:
Adobe Portable Document Format