Model-free computation of risk contributions in credit portfolios

dc.contributor.authorLeitao, Alvaro
dc.contributor.authorOrtiz Gracia, Luis
dc.date.accessioned2020-06-08T08:10:58Z
dc.date.available2022-10-31T06:10:23Z
dc.date.issued2020-10
dc.date.updated2020-06-08T08:10:59Z
dc.description.abstractIn this work, we propose a non-parametric density estimation technique for measuring the risk in a credit portfolio, aiming at efficiently computing the marginal risk contributions. The novel method is based on wavelets, and we derive closed-form expressions to calculate the Value-at-Risk (VaR), the Expected Shortfall (ES) as well as the individual risk contributions to VaR (VaRC) and ES (ESC). We consider the multi-factor Gaussian and t-copula models for driving the defaults. The results obtained along the numerical experiments show the impressive accuracy and speed of this method when compared with crude Monte Carlo simulation (...)
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec700799
dc.identifier.issn0096-3003
dc.identifier.urihttps://hdl.handle.net/2445/164735
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.isformatofVersió postprint del document publicat a: https://www.sciencedirect.com/science/article/abs/pii/S0096300320303155
dc.relation.ispartofApplied Mathematics and Computation, 2020, vol. 382, num. October, p. 125351
dc.rightscc-by-nc-nd (c) Elsevier B.V., 2020
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es
dc.sourceArticles publicats en revistes (Econometria, Estadística i Economia Aplicada)
dc.subject.classificationRisc de crèdit
dc.subject.classificationEstadística no paramètrica
dc.subject.classificationMètode de Montecarlo
dc.subject.otherCredit risk
dc.subject.otherNonparametric statistics
dc.subject.otherMonte Carlo method
dc.titleModel-free computation of risk contributions in credit portfolios
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
700799.pdf
Mida:
1.34 MB
Format:
Adobe Portable Document Format