Carregant...
Miniatura

Tipus de document

Treball de fi de grau

Data de publicació

Llicència de publicació

cc-by-nc-nd (c) Gabriel Marín Sánchez, 2020
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/177854

Analysis of neural networks. Applications to interpretability and uncertainty

Títol de la revista

ISSN de la revista

Títol del volum

Recurs relacionat

Resum

[en] From image creation and pattern recognition to speech and text processing, the outstanding performance of neural networks in a wide variety of fields has made them a popular tool among researchers. However, the fact that we do not fully understand why their performance is so successful or how they operate converts this technology into a black-box model based on trial and error. In this work, we attempt to give deep neural networks a mathematical representation and present different examples and applications that bring light to the understanding of neural networks’ behaviour and usage.

Descripció

Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2020, Director: Antoni Benseny i Alberto Rubio Muñoz

Citació

Citació

MARÍN SÁNCHEZ, Gabriel. Analysis of neural networks. Applications to interpretability and uncertainty. [consulta: 23 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/177854]

Exportar metadades

JSON - METS

Compartir registre