Analysis of neural networks. Applications to interpretability and uncertainty
| dc.contributor.advisor | Benseny, Antoni | |
| dc.contributor.advisor | Rubio Muñoz, Alberto | |
| dc.contributor.author | Marín Sánchez, Gabriel | |
| dc.date.accessioned | 2021-06-01T07:12:51Z | |
| dc.date.available | 2021-06-01T07:12:51Z | |
| dc.date.issued | 2020-06-22 | |
| dc.description | Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2020, Director: Antoni Benseny i Alberto Rubio Muñoz | ca |
| dc.description.abstract | [en] From image creation and pattern recognition to speech and text processing, the outstanding performance of neural networks in a wide variety of fields has made them a popular tool among researchers. However, the fact that we do not fully understand why their performance is so successful or how they operate converts this technology into a black-box model based on trial and error. In this work, we attempt to give deep neural networks a mathematical representation and present different examples and applications that bring light to the understanding of neural networks’ behaviour and usage. | ca |
| dc.format.extent | 56 p. | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.uri | https://hdl.handle.net/2445/177854 | |
| dc.language.iso | eng | ca |
| dc.rights | cc-by-nc-nd (c) Gabriel Marín Sánchez, 2020 | |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | ca |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ | * |
| dc.source | Treballs Finals de Grau (TFG) - Matemàtiques | |
| dc.subject.classification | Intel·ligència artificial | ca |
| dc.subject.classification | Treballs de fi de grau | |
| dc.subject.classification | Xarxes neuronals (Informàtica) | ca |
| dc.subject.classification | Sistemes experts (Informàtica) | ca |
| dc.subject.other | Artificial intelligence | en |
| dc.subject.other | Bachelor's theses | |
| dc.subject.other | Neural networks (Computer science) | en |
| dc.subject.other | Expert systems (Computer science) | en |
| dc.title | Analysis of neural networks. Applications to interpretability and uncertainty | ca |
| dc.type | info:eu-repo/semantics/bachelorThesis | ca |
Fitxers
Paquet original
1 - 1 de 1
Carregant...
- Nom:
- 177854.pdf
- Mida:
- 12.46 MB
- Format:
- Adobe Portable Document Format
- Descripció:
- Memòria