Variability vs. phenotype: Multimodal analysis of Dravet syndrome brain organoids powered by deep learning

dc.contributor.authorLao, Oscar
dc.contributor.authorAcosta, Sandra
dc.contributor.authorTurpin, Isabel
dc.contributor.authorModrego, Adriana
dc.contributor.authorMartí Sarrias, Andrea
dc.contributor.authorOrtega Gascó, Alba
dc.contributor.authorHaeb, Anna-Christina
dc.contributor.authorGarcía González, Laura
dc.contributor.authorSoriano i Fradera, Jordi
dc.contributor.authorRuiz, Núria
dc.contributor.authorPeñuelas Haro, Irene
dc.contributor.authorEspinet, Elisa
dc.contributor.authorTornero, Daniel
dc.date.accessioned2025-12-16T07:43:12Z
dc.date.available2025-12-16T07:43:12Z
dc.date.issued2025-11-21
dc.date.updated2025-12-16T07:43:16Z
dc.description.abstractDravet syndrome (DS) is a developmental epileptic encephalopathy (DEE) driven by pathogenic variants in the SCN1A gene. Brain organoids (BOs) have emerged as reliable models for neurodevelopmental genetic disorders, reproducing human brain developmental milestones and rising as a promising drug testing tool. Here, we determined the underlying molecular DS pathophysiology affecting neuronal connectivity, revealing an early onset excitatory-inhibitory imbalance in maturing DS organoid circuitry. However, neuronal circuitry modeling in BOs remains hampered by the notorious inter- and intra-organoid variability. Thus, leveraging deep learning (DL), we developed ImPheNet, a predictive tool grounded in BO live imaging datasets, to overcome the limitations of the intrinsic BOs variability. ImPheNet accurately classified healthy and DS phenotypes at early onset stages, revealing differences between genotypes and upon antiseizure drug exposure. Altogether, our DL-predictive live imaging strategy, ImPheNet, emerges as a powerful tool to accelerate DEEs research and advance toward treatment discovery in a time- and cost-efficient manner.
dc.format.extent22 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec761934
dc.identifier.issn2589-0042
dc.identifier.pmid41323276
dc.identifier.urihttps://hdl.handle.net/2445/224957
dc.language.isoeng
dc.publisherElsevier
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1016/j.isci.2025.113831
dc.relation.ispartofiScience, 2025, vol. 28, num.11
dc.relation.urihttps://doi.org/10.1016/j.isci.2025.113831
dc.rightscc-by (c) Turpin, I. et al., 2025
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.classificationEpilèpsia
dc.subject.classificationNeurogenètica
dc.subject.classificationAprenentatge automàtic
dc.subject.otherEpilepsy
dc.subject.otherNeurogenetics
dc.subject.otherMachine learning
dc.titleVariability vs. phenotype: Multimodal analysis of Dravet syndrome brain organoids powered by deep learning
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
904807.pdf
Mida:
13.73 MB
Format:
Adobe Portable Document Format