Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc-by (c) Grasemann, Uli et al., 2021
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/185984

Predicting language treatment response in bilingual aphasia using neural network-based patient models

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

Predicting language therapy outcomes in bilinguals with aphasia (BWA) remains challenging due to the multiple pre- and poststroke factors that determine the defcits and recovery of their two languages. Computational models that simulate language impairment and treatment outcomes in BWA can help predict therapy response and identify the optimal language for treatment. Here we used the BiLex computational model to simulate the behavioral profle of language defcits and treatment response of a retrospective sample of 13 Spanish-English BWA who received therapy in one of their languages. Specifcally, we simulated their prestroke naming ability and poststroke naming impairment in each language, and their treatment response in the treated and the untreated language. BiLex predicted treatment efects accurately and robustly in the treated language and captured diferent degrees of cross-language generalization in the untreated language in BWA. Our cross-validation approach further demonstrated that BiLex generalizes to predict treatment response for patients whose data were not used in model training. These fndings support the potential of BiLex to predict therapy outcomes for BWA and suggest that computational modeling may be helpful to guide individually tailored rehabilitation plans for this population.

Citació

Citació

GRASEMANN, Uli, PEÑALOZA, Claudia, DEKHTYAR, Maria, MIIKKULAINEN, Risto, KIRAN, Swathi. Predicting language treatment response in bilingual aphasia using neural network-based patient models. _Scientific Reports_. 2021. Vol. 11, núm. 10497. [consulta: 24 de gener de 2026]. ISSN: 2045-2322. [Disponible a: https://hdl.handle.net/2445/185984]

Exportar metadades

JSON - METS

Compartir registre