Predicting language treatment response in bilingual aphasia using neural network-based patient models

dc.contributor.authorGrasemann, Uli
dc.contributor.authorPeñaloza, Claudia
dc.contributor.authorDekhtyar, Maria
dc.contributor.authorMiikkulainen, Risto
dc.contributor.authorKiran, Swathi
dc.date.accessioned2022-05-24T16:54:51Z
dc.date.available2022-05-24T16:54:51Z
dc.date.issued2021-05-18
dc.date.updated2022-05-24T16:54:51Z
dc.description.abstractPredicting language therapy outcomes in bilinguals with aphasia (BWA) remains challenging due to the multiple pre- and poststroke factors that determine the defcits and recovery of their two languages. Computational models that simulate language impairment and treatment outcomes in BWA can help predict therapy response and identify the optimal language for treatment. Here we used the BiLex computational model to simulate the behavioral profle of language defcits and treatment response of a retrospective sample of 13 Spanish-English BWA who received therapy in one of their languages. Specifcally, we simulated their prestroke naming ability and poststroke naming impairment in each language, and their treatment response in the treated and the untreated language. BiLex predicted treatment efects accurately and robustly in the treated language and captured diferent degrees of cross-language generalization in the untreated language in BWA. Our cross-validation approach further demonstrated that BiLex generalizes to predict treatment response for patients whose data were not used in model training. These fndings support the potential of BiLex to predict therapy outcomes for BWA and suggest that computational modeling may be helpful to guide individually tailored rehabilitation plans for this population.
dc.format.extent11 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec712561
dc.identifier.issn2045-2322
dc.identifier.urihttps://hdl.handle.net/2445/185984
dc.language.isoeng
dc.publisherNature Publishing Group
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1038/s41598-021-89443-6
dc.relation.ispartofScientific Reports, 2021, vol. 11, p. 10497
dc.relation.urihttps://doi.org/10.1038/s41598-021-89443-6
dc.rightscc-by (c) Grasemann, Uli et al., 2021
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceArticles publicats en revistes (Cognició, Desenvolupament i Psicologia de l'Educació)
dc.subject.classificationAfàsia
dc.subject.classificationTrastorns del llenguatge
dc.subject.classificationLogopèdia
dc.subject.classificationBilingüisme
dc.subject.classificationXarxes neuronals (Informàtica)
dc.subject.otherAphasia
dc.subject.otherLanguage disorders
dc.subject.otherSpeech therapy
dc.subject.otherBilingualism
dc.subject.otherNeural networks (Computer science)
dc.titlePredicting language treatment response in bilingual aphasia using neural network-based patient models
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
712561.pdf
Mida:
2.49 MB
Format:
Adobe Portable Document Format