Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc-by (c)  Delgado, R. et al., 2024
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/220045

Predictive risk models for COVID-19 patients using the multi-thresholding meta-algorithm

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

This study aims to develop a Machine Learning model to assess the risks faced by COVID-19 patients in a hospital setting, focusing specifically on predicting the complications leading to Intensive Care Unit (ICU) admission or mortality, which are minority classes compared to the majority class of discharged patients. We operate within a multiclass framework comprising three distinct classes, and address the challenge of dataset imbalance, a common source of model bias. To effectively manage this, we introduce the Multi-Thresholding meta-algorithm (MTh), an innovative output-level methodology that extends traditional thresholding from binary to multiclass classification. This methodology dynamically adjusts class probabilities using misclassification costs, making it highly effective in imbalanced datasets. Our approach is further enhanced by integrating the simplicity, transparency, and effectiveness of Bayesian networks to create a robust predictive model. Using patient admission data, the model accurately identifies key risk and protective factors for COVID-19 outcomes. Our findings indicate that certain patient characteristics, such as high Charlson Index and pre-existing conditions, significantly influence the risk of ICU admission and mortality. Moreover, we introduce an explanatory model that elucidates the interrelationships among these factors, demonstrating the influence of therapeutic limits on the overall risk assessment of COVID-19 patients. Overall, our research provides a significant contribution to the field of Machine Learning by offering a novel solution for multiclass classification in the context of imbalanced datasets. This model not only enhances predictive accuracy but also supports critical decision-making processes in healthcare, potentially improving patient outcomes and optimizing clinical resource allocation.

Citació

Citació

DELGADO DE LA TORRE, Rosario, FERNÁNDEZ-PELÁEZ, Francisco, PALLARÈS, Natàlia, DÍAZ BRITO, Vicens, IZQUIERDO, Elisenda, ORIOL, Isabel, SIMONETTI, Antonella, TEBÉ, Cristian, VIDELA, Sebastià, CARRATALÀ, Jordi. Predictive risk models for COVID-19 patients using the multi-thresholding meta-algorithm. _Scientific Reports_. 2024. Vol. 14. [consulta: 20 de gener de 2026]. ISSN: 2045-2322. [Disponible a: https://hdl.handle.net/2445/220045]

Exportar metadades

JSON - METS

Compartir registre