Predictive risk models for COVID-19 patients using the multi-thresholding meta-algorithm

dc.contributor.authorDelgado de la Torre, Rosario
dc.contributor.authorFernández-Peláez, Francisco
dc.contributor.authorPallarès, Natàlia
dc.contributor.authorDíaz Brito, Vicens
dc.contributor.authorIzquierdo, Elisenda
dc.contributor.authorOriol, Isabel
dc.contributor.authorSimonetti, Antonella
dc.contributor.authorTebé, Cristian
dc.contributor.authorVidela, Sebastià
dc.contributor.authorCarratalà, Jordi
dc.date.accessioned2025-03-26T16:26:42Z
dc.date.available2025-03-26T16:26:42Z
dc.date.issued2024-11-18
dc.date.updated2025-03-26T16:26:43Z
dc.description.abstractThis study aims to develop a Machine Learning model to assess the risks faced by COVID-19 patients in a hospital setting, focusing specifically on predicting the complications leading to Intensive Care Unit (ICU) admission or mortality, which are minority classes compared to the majority class of discharged patients. We operate within a multiclass framework comprising three distinct classes, and address the challenge of dataset imbalance, a common source of model bias. To effectively manage this, we introduce the Multi-Thresholding meta-algorithm (MTh), an innovative output-level methodology that extends traditional thresholding from binary to multiclass classification. This methodology dynamically adjusts class probabilities using misclassification costs, making it highly effective in imbalanced datasets. Our approach is further enhanced by integrating the simplicity, transparency, and effectiveness of Bayesian networks to create a robust predictive model. Using patient admission data, the model accurately identifies key risk and protective factors for COVID-19 outcomes. Our findings indicate that certain patient characteristics, such as high Charlson Index and pre-existing conditions, significantly influence the risk of ICU admission and mortality. Moreover, we introduce an explanatory model that elucidates the interrelationships among these factors, demonstrating the influence of therapeutic limits on the overall risk assessment of COVID-19 patients. Overall, our research provides a significant contribution to the field of Machine Learning by offering a novel solution for multiclass classification in the context of imbalanced datasets. This model not only enhances predictive accuracy but also supports critical decision-making processes in healthcare, potentially improving patient outcomes and optimizing clinical resource allocation.
dc.format.extent33 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec755089
dc.identifier.issn2045-2322
dc.identifier.pmid39557887
dc.identifier.urihttps://hdl.handle.net/2445/220045
dc.language.isoeng
dc.publisherNature Publishing Group
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1038/s41598-024-77386-7
dc.relation.ispartofScientific Reports, 2024, vol. 14
dc.relation.urihttps://doi.org/10.1038/s41598-024-77386-7
dc.rightscc-by (c) Delgado, R. et al., 2024
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceArticles publicats en revistes (Ciències Clíniques)
dc.subject.classificationAlgorismes
dc.subject.classificationUnitats de cures intensives
dc.subject.classificationEstadística bayesiana
dc.subject.classificationCOVID-19
dc.subject.otherAlgorithms
dc.subject.otherIntensive care units
dc.subject.otherBayesian statistical decision
dc.subject.otherCOVID-19
dc.titlePredictive risk models for COVID-19 patients using the multi-thresholding meta-algorithm
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
881252.pdf
Mida:
6.5 MB
Format:
Adobe Portable Document Format