Population level inference for multivariate MEG analysis

dc.contributor.authorJafarpour, Anna
dc.contributor.authorBarnes, Gareth
dc.contributor.authorFuentemilla Garriga, Lluís
dc.contributor.authorDüzel, Emrah
dc.contributor.authorPenny, Will
dc.date.accessioned2016-02-09T15:42:05Z
dc.date.available2016-02-09T15:42:05Z
dc.date.issued2013-08-05
dc.date.updated2016-02-09T15:42:05Z
dc.description.abstractMultivariate analysis is a very general and powerful technique for analysing Magnetoencephalography (MEG) data. An outstanding problem however is how to make inferences that are consistent over a group of subjects as to whether there are condition-specific differences in data features, and what are those features that maximise these differences. Here we propose a solution based on Canonical Variates Analysis (CVA) model scoring at the subject level and random effects Bayesian model selection at the group level. We apply this approach to beamformer reconstructed MEG data in source space. CVA estimates those multivariate patterns of activation that correlate most highly with the experimental design; the order of a CVA model is then determined by the number of significant canonical vectors. Random effects Bayesian model comparison then provides machinery for inferring the optimal order over the group of subjects. Absence of a multivariate dependence is indicated by the null model being the most likely. This approach can also be applied to CVA models with a fixed number of canonical vectors but supplied with different feature sets. We illustrate the method by identifying feature sets based on variable-dimension MEG power spectra in the primary visual cortex and fusiform gyrus that are maximally discriminative of data epochs before versus after visual stimulation.
dc.format.extent8 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec629189
dc.identifier.issn1932-6203
dc.identifier.pmid23940738
dc.identifier.urihttps://hdl.handle.net/2445/69345
dc.language.isoeng
dc.publisherPublic Library of Science (PLoS)
dc.relation.isformatofReproducció del document publicat a: http://dx.doi.org/10.1371/journal.pone.0071305
dc.relation.ispartofPLoS One, 2013, vol. 8, num. 8, p. e71305
dc.relation.urihttp://dx.doi.org/10.1371/journal.pone.0071305
dc.rightscc-by (c) Jafarpour, Anna et al., 2013
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es
dc.sourceArticles publicats en revistes (Cognició, Desenvolupament i Psicologia de l'Educació)
dc.subject.classificationDiagnòstic per la imatge
dc.subject.classificationAnàlisi multivariable
dc.subject.classificationEncèfal
dc.subject.otherDiagnostic imaging
dc.subject.otherMultivariate analysis
dc.subject.otherEncephalon
dc.titlePopulation level inference for multivariate MEG analysis
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
629189.pdf
Mida:
1.37 MB
Format:
Adobe Portable Document Format