Punts fixos de difeomorfismes hamiltonians

dc.contributor.advisorMundet i Riera, Ignasi
dc.contributor.authorPlandolit López, Bernat
dc.date.accessioned2018-05-11T08:05:47Z
dc.date.available2018-05-11T08:05:47Z
dc.date.issued2017-06-29
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2017, Director: Ignasi Mundet i Rieraca
dc.description.abstract[en] Arnold’s conjecture asserts that every Hamiltonian diffeomorfism of a compact symplectic manifold has at least as many fixed points as a function on the manifold must have critical points. What’s more, if the fixed points are all non degenerate, then the number of fixed points is at least the minimal number of critical points for a Morse function on the manifold. In this project we will give meaning to all the concepts mentioned in the conjecture’s statement and we will study a very specific known result: the case in which the manifolds are 2-dimensional tori and the diffeomorfisms are close enough to identity. We will also generalize some results to 2n-dimensional tori to study the general case for every Hamiltonian diffeomorfism.ca
dc.format.extent46 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/122286
dc.language.isocatca
dc.rightscc-by-nc-nd (c) Bernat Plandolit López, 2017
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques
dc.subject.classificationDifeomorfismes
dc.subject.classificationTreballs de fi de grau
dc.subject.classificationTor (Geometria)ca
dc.subject.classificationVarietats simplèctiquesca
dc.subject.classificationTopologia diferencialca
dc.subject.otherDiffeomorphisms
dc.subject.otherBachelor's theses
dc.subject.otherTorus (Geometry)en
dc.subject.otherSymplectic manifoldsen
dc.subject.otherDifferential topologyen
dc.titlePunts fixos de difeomorfismes hamiltoniansca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
memoria.pdf
Mida:
767.8 KB
Format:
Adobe Portable Document Format
Descripció:
Memòria