Biomimetic Mn-catalases based on dimeric manganese complexes in mesoporous silica for potential antioxidant agent

dc.contributor.authorEscriche Tur, Luis
dc.contributor.authorCorbella i Cordomí, Montserrat
dc.contributor.authorFont Bardia, Ma. Mercedes
dc.contributor.authorCastro, I.
dc.contributor.authorBonneviot, L.
dc.contributor.authorAlbela Castrillo, Mª Belén
dc.date.accessioned2020-06-09T13:41:08Z
dc.date.available2020-06-09T13:41:08Z
dc.date.issued2015-10-20
dc.date.updated2020-06-09T13:41:08Z
dc.description.abstractTwo new structural and functional models of the Mn-catalase with formula [{MnIII(bpy)(H2O)}(μ-2-MeOC6H4CO2)2(μ-O){MnIII(bpy)(X)}]X, where X = NO3 (1) and ClO4 (2) and bpy = 2,2′-bipyridine, were synthesized and characterized by X-ray diffraction. In both cases, a water molecule and an X ion occupy the monodentate positions. The magnetic properties of these compounds reveal a weak antiferromagnetic behavior (2J = −2.2 cm 1 for 1 and −0.7 cm 1 for 2, using the spin Hamiltonian H = −2J S1·S2) and negative zero-field splitting parameter DMn (−4.6 cm 1 and −3.0 cm 1 for 1 and 2, respectively). This fact, together with the nearly orthogonal orientation of the Jahn Teller axes of the MnIII ions explain the unusual shape of χMT versus T plot at low temperature. Compound 1 presents a better catalase activity than 2 in CH3CN H2O media, probably due to a beneficial interaction of the NO3− ion with the Mn complex in solution. These compounds were successfully inserted inside two-dimensional hexagonal mesoporous silica (MCM-41 type) leading to the same hybrid material ([Mn2O]@SiO2), without the X group. The manganese complex occupies approximately half of the available pore volume, keeping the silica's hexagonal array intact. Magnetic measurements of [Mn2O]@SiO2 suggest that most of the dinuclear unit is preserved, as a non-negligible interaction between Mn ions is still observed. The X-ray photoelectron spectroscopy analysis of the Mn 3s peak confirms that Mn remains as MnIII inside the silica. The catalase activity study of material [Mn2O]@SiO2 reveals that the complex is more active inside the porous silica, probably due to the surface silanolate groups of the pore wall. Moreover, the new material shows catalase activity in water media, while the coordination compounds are not active.
dc.format.extent46 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec654939
dc.identifier.issn0020-1669
dc.identifier.urihttps://hdl.handle.net/2445/164947
dc.language.isoeng
dc.publisherAmerican Chemical Society
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1021/acs.inorgchem.5b01425
dc.relation.ispartofInorganic Chemistry, 2015, vol. 54, num. 21, p. 10111-10125
dc.relation.urihttps://doi.org/10.1021/acs.inorgchem.5b01425
dc.rights(c) American Chemical Society , 2015
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Mineralogia, Petrologia i Geologia Aplicada)
dc.subject.classificationQuímica bioinorgànica
dc.subject.classificationMaterials
dc.subject.classificationManganès
dc.subject.classificationLligands
dc.subject.otherBioinorganic chemistry
dc.subject.otherMaterials
dc.subject.otherManganese
dc.subject.otherLigands
dc.titleBiomimetic Mn-catalases based on dimeric manganese complexes in mesoporous silica for potential antioxidant agent
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
654939.pdf
Mida:
2.61 MB
Format:
Adobe Portable Document Format