Teoria de control clàssica per sistemes dinàmics continus

dc.contributor.advisorVieiro Yanes, Arturo
dc.contributor.authorReal Casals, Anna
dc.date.accessioned2020-06-15T08:16:32Z
dc.date.available2020-06-15T08:16:32Z
dc.date.issued2020-01-19
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2020, Director: Arturo Vieiro Yanesca
dc.description.abstract[en] The main objective of this study is the analysis of the behavior of continuous dynamic systems. The key to this study is the control, a variable that drives the system to achieve a fixed final state. Controllability, observability and stability are aspects that affect the choice of an adequate control. Attention has been focused on two types of control. The first one is the PID control, which is focused on feedback to produce a proportional, derivative and integral adjustment on the system, hence its name. This control has been implemented for the classical pendulum under the action of the gravitational force and without friction. The other one is the optimal control. The objective of this control for the dynamic system is to optimize a functional. The conditions have been studied to ensure that a control is an optimal control in different situations.ca
dc.format.extent60 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/165520
dc.language.isocatca
dc.rightscc-by-nc-nd (c) Anna Real Casals, 2020
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques
dc.subject.classificationEquacions diferencials ordinàriesca
dc.subject.classificationTreballs de fi de grau
dc.subject.classificationTeoria de controlca
dc.subject.classificationFuncions de Lyapunovca
dc.subject.otherOrdinary differential equationsen
dc.subject.otherBachelor's theses
dc.subject.otherControl theoryen
dc.subject.otherLyapunov functionsen
dc.titleTeoria de control clàssica per sistemes dinàmics continusca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
165520.pdf
Mida:
1.25 MB
Format:
Adobe Portable Document Format
Descripció:
Memòria